√ Eksponen (Pengertian, Rumus, & Contoh Soal) – Metropro

4 x 4 x 4 x 4 x 4

Bagaimana kamu membuat bentuk perkalian diatas agar menjadi lebih ringkas?

Yap, bentuk diatas dapat kita tuliskan sebagai 45 yang dibaca 4 pangkat 5. Perpangkatan merupakan kata lain dari eksponen.

Nah, kali ini mari kita simak pembahasan lebih lanjut mengenai eksponen.

Pengertian Eksponen Matematika

Eksponen atau yang lebih sering kita dengar dengan sebutan pangkat adalah nilai yang menunjukkan derajat kepangkatan atau sebanyak berapa kali sebuah bilangan dikalikan dengan bilangan tersebut.

Jika terdapat dua bilangan a dan b, maka notasi dari eksponen matematika adalah ab yang kemudian dibaca a pangkat b.

Bilangan a kemudian disebut sebagai bilangan basis (pokok) dan b disebut eksponennya.

Jika b merupakan bilangan bulat positif, maka eksponen dapat dinyatakan

ab = a x a x a x … x a  (a sejumlah b faktor)

Sifat sifat eksponen

Eksponen atau pangkat memiliki beberapa sifat, diantaranya :

  1. a0= 1 (Eksponen Nol)
  2. a-p = 1/ap (Eksponen Negatif)
  3. ap/q=q√ap (Eksponen Pecahan)
  4. ap x aq = ap+q
  5. ap/aq=ap-q
  6. (ap)q=apq
  7. (am.bn)p = amp. bnp
  8. (am/an)p = amp/anp

Fungsi Eksponen dan Grafiknya

Apabila terdapat bilangan real x, maka fungsi eksponen merupakan fungsi yang memetakan bilangan x ke ax dengan syarat a>0 dan a≠1 atau dapat dituliskan f:(x)=ax.

Untuk grafiknya adalah

Grafik Monoton Turun Grafik Monoton Naik
 Grafik Monoton Turun  Grafik Monoton Naik

Fungsi eksponen tersebut memiliki sifat diantaranya

  1. Kurva berada diatas sumbu x (definit positif)
  2. Memotong sumbu y pada (0,1)
  3. Mempunyai asimto y=0 (sb. X)
  4. Untuk x>1, maka grafik monoton naik
  5. Untuk 0<x<1, maka grafik monoton turun

Baca juga Limit Fungsi.

Persamaan Fungsi Eksponen

Seperti fungsi fungsi lain, dalam materi fungsi eksponen juga terdapat persamaan fungsi eksponen.

Nah, untuk a>0 dan a≠1, beberapa bentuk dari persamaan fungsi eksponen dan penyelesaiannya adalah

  1. Jika af(x) = an maka f(x) = n
  2. jika ag(x) = ah(x) maka g(x) = h(x)
  3. jika af(x)=bf(x) maka f(x) = 0
  4. jika f(x)g(x)=f(x)h(x) maka kemungkinan penyelesaiannya adalah
  5. g(x) = h(x)
  6. f(x) = 1
  7. f(x) = -1 jika g(x) dan h(x) sama sama ganjil atau genap
  8. f(x) = 0 jika g(x)>0 dan h(x)<0
  9. jika f(x)h(x)=g(x)h(x) maka kemungkinan penyelesaiannya adalah
  10. f(x) = g(x)
  11. h(x) = 0 jika g(x) dan h(x) tidak sama dengan 0
  12. jika f(x)g(x)=1 maka kemungkinan penyelesaiannya adalah
  13. f(x) = 1
  14. g(x) = 0 jika f(x)≠0
  15. f(x) = -1 jika g(x) genap

Baca juga Persamaan Linear.

Pertidaksamaan Fungsi Eksponen

Jika ada persamaan fungsi eksponen, maka terdapat pula pertidaksamaan fungsi eksponen. Penyelesaian dari pertidaksamaan fungsi eksponen adalah sebagai berikut

  1. untuk a>1
  2. jika af(x)<ag(x) maka f(x)<g(x)
  3. jika af(x)>ag(x) maka f(x)>g(x)
  4. untuk 0<a<1
  5. jika af(x)<ag(x) maka f(x)>g(x)
  6. jika af(x)>ag(x) maka f(x)<g(x)

Contoh Soal Fungsi Eksponen

1. x3 . x5 = x(3+5) = x8

2. (x3.y2)2 = x3.2 . y2.2 = x6.y4

3. Jika f(x) = 3x+2 cari nilai f(3) dan f(-3)

  • f(3) = 33+2 = 35 = 243
  • f(-3) = 3-3+2 = 3-1= 1/3 = 0,333

4. Cari nilai x yang memenuhi 3x-3 = 0

  • 3x-3 = 0
  • 3x =31
  • x = 1 maka x yang dicari adalah x=1

5. Tentukan nilai x yang memenuhi persamaan eksponen 4x+2+4x=17 !

Pembahasan

4x+2 + 4x=17

4x.42 + 4x=17

16.4x + 4x = 17

17.4x = 17

4x = 1

x = 0

Jadi, nilai x yang memenuhi persamaan eksponen 4x+2+4x=17 adalah 0.

6. Akar-akar persamaan 253x-6 = 54x^2−12x+2 adalah p dan q. Berapakah nilai pq?

Pembahasan

253x-6 = 54x^2−12x+2

52(3x-6) = 54x^2−12x+2

2(3x-6) = 4x2 − 12x + 2

6x – 12 = 4x2 − 12x + 2

4x2 − 12x + 2 – 6x + 12 = 0

4x2 − 18x +14 = 0

pq = c/a = 14/4 = 3,5

Jadi, nilai pq adalah 3,5.

7. Diketahui 32x – 1 – 1 = 2.3x-1. Hitunglah nilai 9x!

Pembahasan

32x – 1 – 1 = 2.3x-1

32x /31 – 1 = 2.3x /31

32x – 3 = 2.3x

32x -2.3x – 3 = 0

Misal a = 3x, maka

32x – 2.3x – 3 = 0

a2 – 2a – 3 = 0

(a-3)(a+1) = 0

a = 3 atau a = -1

Karena, a = -1 tidak mungkin memenuhi a = 3x, maka a = 3.

Sehingga

a = 3x

3 = 3x

31 = 3x

x = 1

9x = 91 = 9

Jadi, nilai dari 9x adalah 9.

8. Jika 3x – y = 81 dan 2x – 2y = 1/16, tentukan nilai x+y!

Pembahasan

3x – y = 81

3x – y = 34

x – y = 4

x = y + 4 … (1)

2x – 2y = 1/16

2x – 2y = 2-4

x – 2y = -4 … (2)

Substitusikan (1) ke (2), sehingga diperoleh

x – 2y = 4

y + 4 – 2y = -4

-y = -8

y = 8

Substitusikan nilai y ke (1), sehingga diperoleh

x = y + 4

x = 8 + 4

x = 12

x + y = 8 + 12 = 20

Jadi, nilai x + y adalah 20.

9. Tentukan nilai 31/n jika diketahui (90,125)n = √3.

Pembahasan

(90,125)n = √3

90,125n = √3

32(0,125)n = 3½

30,25n = 3½

0,25n = ½

n = 2

Sehingga diperoleh

31/n = 3½ = √3

Jadi, nilai 31/n adalah √3.

Demikian pembahasan tentang materi eksponen. Semoga bermanfaat. Baca juga Persamaan Kuadrat.

website Pelajaran SD SMP SMA dan Kuliah Terlengkap

Materi pelajaran terlengkap

mata pelajaran
jadwal mata pelajaran mata pelajaran sma jurusan ipa mata pelajaran sd mata pelajaran dalam bahasa jepang mata pelajaran kurikulum merdeka mata pelajaran dalam bahasa inggris mata pelajaran sma jurusan ips mata pelajaran sma
bahasa inggris mata pelajaran
bu ani memberikan tes ujian akhir mata pelajaran ipa
tujuan pemberian mata pelajaran pendidikan kewarganegaraan di sekolah adalah
dalam struktur kurikulum mata pelajaran mulok bersifat opsional. artinya mata pelajaran smp mata pelajaran ipa mata pelajaran bahasa indonesia mata pelajaran ips mata pelajaran bahasa inggris mata pelajaran sd kelas 1
data mengenai mata pelajaran favorit dikumpulkan melalui cara
soal semua mata pelajaran sd kelas 1 semester 2 mata pelajaran smk mata pelajaran kelas 1 sd mata pelajaran matematika mata pelajaran ujian sekolah sd 2022
bahasa arab mata pelajaran mata pelajaran jurusan ips mata pelajaran sd kelas 1 2021 mata pelajaran sbdp mata pelajaran kuliah mata pelajaran pkn
bahasa inggrisnya mata pelajaran mata pelajaran sma jurusan ipa kelas 10 mata pelajaran untuk span-ptkin mata pelajaran ppkn mata pelajaran ips sma mata pelajaran tik
nama nama mata pelajaran dalam bahasa inggris mata pelajaran pkn sd mata pelajaran mts mata pelajaran pjok
nama nama mata pelajaran dalam bahasa arab mata pelajaran bahasa inggrisnya mata pelajaran bahasa arab
seorang pengajar mata pelajaran akuntansi di sekolah berprofesi sebagai
nama mata pelajaran dalam bahasa jepang
hubungan bidang studi pendidikan kewarganegaraan dengan mata pelajaran lainnya
dalam struktur kurikulum mata pelajaran mulok bersifat opsional artinya mata pelajaran dalam bahasa arab
tujuan mata pelajaran seni rupa adalah agar siswa

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *